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Abstract—Spatial crowdsourcing brings in a new approach for
social media and location-based services (LBS) to collect location-
specific information via mobile users. For example, when a user
checks in at a shop on Facebook, he will immediately receive and
is asked to complete a set of tasks such as “what is the opening
hour of the shop”. It is non-trivial to complete a set of tasks
timely and accurately via spatial crowdsourcing. Since workers in
spatial crowdsourcing are often transient and limited in number,
these social media platforms need to properly allocate workers
within the set of tasks such that all tasks are completed (i) with
high quality and (ii) with a minimal latency (estimated by the
arriving index of the last recruited worker). Solutions to quality
and latency control in traditional crowdsourcing are inapplicable
in this problem because they either assume sufficient workers or
ignore the spatiotemporal factors. In this work, we define the
Latency-oriented Task Completion (LTC) problem, which trades
off quality and latency (number of workers) of task completion
in spatial crowdsourcing. We prove that the LTC problem is
NP-hard. We first devise a minimum-cost-flow based algorithm
with a constant approximation ratio for the LTC problem in
the offline scenario, where all information is known a prior.
Then we study the more practical online scenario of the LTC
problem, where workers appear dynamically and the platform
needs to arrange tasks for each worker immediately based on
partial information. We design two greedy-based algorithms
with competitive ratio guarantees to solve the LTC problem in
the online scenario. Finally, we validate the effectiveness and
efficiency of the proposed solutions through extensive evaluations
on both synthetic and real-world datasets.

I. INTRODUCTION

With the rapid development of mobile Internet, spatial
crowdsourcing emerges as a prevailing computation paradigm,
where crowd workers (workers for short) are organized by
the crowdsourcing platform to perform micro-tasks (tasks for
short) by physically moving to the locations of the tasks. In
particular, spatial crowdsourcing provides a convenient way
for social media and location-based services (LBS) to acquire
location-specific data by mobile Internet users. Social networks
such as Facebook [1] and Foursquare [2] crowdsource informa-
tion collection of POIs (e.g., shops, restaurants, tourist sights)
by pushing questions relevant to these locations to users who
happened to check in nearby. LBS providers such as Waze [3]
and OpenStreetMap [4] invite users who have just reported
traffic situations or updated map data to answer additional
questions about the surroundings. Naturally, the “questions”
and “users” in these applications can be considered as the
“tasks” and “workers” in spatial crowdsourcing.

These spatial crowdsourcing powered social network and

LBS applications pose new challenges in spatial crowdsourcing
research. Take the Facebook Editor [5] as example, where
Facebook utilizes spatial crowdsourcing to collect information
about shops for Facebook maps. As shown in Fig. 1, Facebook
wants to collect information about three nearby POIs, Think
Cafe, Yee Shun Restaurant and SOGO Hong Kong. When
one user checks in at a location near Think Cafe, Facebook
immediately pushes him/her a set of questions about the three
nearby POIs. Each question is a simple binary choice question
such as “Does this place have street parking?”. Facebook
usually packs multiple questions (tasks) in a bundle and all
the questions need to be completed with a desired accuracy,
which will be used for queries and interactions on Facebook
maps. However, it is non-trivial for Facebook to complete a set
of tasks timely and accurately via spatial crowdsourcing. Since
workers in spatial crowdsourcing are often transient and lim-
ited in number, these social media platforms need to properly
allocate workers within the set of tasks such that all tasks are
completed (i) with high quality and (ii) by a minimal amount
of workers (i.e., latency of task completion, estimated as the
arriving index of the last worker when all tasks are completed).
In fact, these social media and location-based services (LBS)
platforms usually encounter the same challenges: how to trade-
off latency and quality of task completion.

The task completion problem in the aforementioned social
network and LBS applications becomes more challenging
when users (workers) come dynamically (a.k.a the online
scenario). In these applications, it is common that users check
in on the platform at any time, i.e., the platform is unaware
of the arrival of users in advance. Given no information about
the subsequent workers, the platform needs to immediately
decide which questions (tasks) to be allocated to each new
user (worker) and the decision cannot be revoked afterwards.
Therefore, another challenge for task completion in spatial
crowdsourcing is how to deal with the online scenario and
make arrangement among workers and tasks with partial spa-
tiotemporal information. To further illustrate the motivations,
we go through the following toy example.

Example 1: Suppose a spatial crowdsourcing powered so-
cial media platform has three tasks t1 - t3 to complete (Fig. 1).
Eight workers w1 - w8 check in at locations as shown in
Fig. 1a and in an order from w1 to w8. Here we associate
an “index” to each worker, which denotes the arriving order
of the worker. Also we assume that each worker is associated
with a historical accuracy for each task (Table I) and is
willing to answer at most two questions from the platform.



(a) Locations of tasks and workers (b) Task t1 at Think cafe (c) Task t2 at Yee Shun (d) Task t3 at SOGO

Fig. 1: An illustration of information acquisition in a spatial crowdsourcing powered social media platform (e.g. Facebook)

TABLE I: Historical accuracy between tasks and workers
w1 w2 w3 w4 w5 w6 w7 w8

t1 0.96 0.98 0.98 0.98 0.96 0.96 0.94 0.94
t2 0.98 0.96 0.96 0.98 0.94 0.96 0.96 0.94
t3 0.96 0.96 0.96 0.98 0.94 0.94 0.96 0.96

TABLE II: An arrangement in online scenario
w1 w2 w3 w4 w5 w6 w7 w8

t1 0.96 0.98 0.98 0.98 0.96 0.96 0.94 0.94
t2 0.98 0.96 0.96 0.98 0.94 0.96 0.96 0.94
t3 0.96 0.96 0.96 0.98 0.94 0.94 0.96 0.96

To get high-quality answers for these three tasks, the platform
often aggregates responses from multiple workers. The workers
needed for each task is relevant to a quality threshold, which
is preset by the platform according to different applications.
However, as discussed above, workers in spatial crowdsourcing
are transient and limited in number, so the platform needs
to minimize the index of the last recruited worker (i.e., the
latency to compete all the tasks) when the quality of every
task reaches the quality threshold. Here we assume the quality
threshold is 2.92. For simplification, we further assume that the
quality aggregation function is only the total sum of historical
accuracies of the workers assigned to the task. More practical
quality aggregation functions also apply (see Sec. II).

For the offline scenario, where the historical accuracies,
locations and arriving orders of all workers are known in
advance, the optimal arrangement is marked in bold in Table I
and 5 workers are needed. That is, the minimal index of the
last worker (latency) to complete the three tasks in the offline
scenario is 5. In the online scenario, the historical accuracies,
locations and arriving orders of all workers cannot be known
beforehand. If we use the simple greedy strategy to arrange
workers, one possible arrangement is shown in bold in Table II.
The final latency to complete the three tasks adds up to 7,
which is greater than that in the offline scenario.

As illustrated in the above example, we investigate the
Latency-oriented Task Completion (LTC) problem in spatial
crowdsourcing. The LTC problem aims to find a task-worker
arrangement, such that the latency to complete all tasks is
minimized, while the quality of the completed tasks exceeds
a preset quality threshold. We also study the online version
of LTC problem, which is identical to the LTC problem
except that arrangements are made immediately when each
new worker arrives on the platform. Note that existing research
on spatial crowdsourcing either focuses on quality-based task
arrangement [6] or latency-based task arrangement [7], [8], [9].
None explores the trade-off between latency and quality for
task arrangement in spatial crowdsourcing. In addition, most
existing research only deals with the offline scenario [8], [9],
leaving them inapplicable to our LTC problem in the online
scenario. In summary, we make the following contributions.

• We formulate the Latency-oriented Task Completion

(LTC) problem, which aims to minimize the latency
(number of workers) to complete a set of tasks with
high quality in spatial crowdsourcing.

• We prove that the LTC problem is NP-hard and
design a MinimumCostFlow-based algorithm to solve
LTC problem in the offline scenario with a constant
approximation ratio.

• We further study the LTC problem in the online
scenario and design two online algorithms, Largest
Acc First (LAF) and Average And Maximum (AAM),
to solve the online LTC problem with constant com-
petitive ratios.

• We verify the effectiveness and efficiency of the
proposed algorithms extensively on both synthetic and
real-world datasets.

In the rest of this paper, we formulate the LTC problem in
Sec. II and present the solutions to the offline and the online
scenarios in Sec. III and Sec. IV, respectively. We evaluate the
performance of our solutions in Sec. V, review related work
in Sec. VI and finally conclude in Sec. VII.

II. PROBLEM DEFINITION

In this section, we formally define the Latency-oriented
Task Completion (LTC) problem. We first present the LTC
problem in the offline scenario and prove it is NP-hard. Then
we define the LTC problem in the online scenario, which is
practical in many spatial crowdsourcing applications.

A. Basics

This subsection introduces important concepts which will
be used throughout this work.

Definition 1 (Micro Task): A micro task (“task” for short)
is denoted by t =< lt, ε >, where lt is the location of t and ε
is a constant indicating the maximum tolerable error rate of t.

We assume a micro task requires a binary answer from
workers, which is common in check-in based spatial crowd-
sourcing platforms such as Facebook Editor [5]. Without loss
of generality, we denote +1 as a “YES” and−1 as a “NO”. We
make the following assumptions on tasks. (i) Tasks are known
in advance to the platform, because spatial crowdsourcing
platforms such as Facebook [5] and OpenStreetMap [4] can
always prepare tasks to collect data, resolve entities and so
on. (ii) All tasks have a constant tolerable error rate. Since
spatial crowdsourcing platforms such as Facebook [5] and
Waze[3] aim to help users to find the correct information about
restaurants [5] or road condition [3], it is reasonable to set
a single low error rate to represent the minimal guaranteed
accuracy of the platform.



Definition 2 (Crowd Worker): A crowd worker (“worker”
for short) w =< ow, lw, pw,K >, is the ow-th person who
checks in with location lw. pw is the historical accuracy of the
worker and K is a constant indicating the maximum number
of tasks the worker can perform during each check-in.

We make the following assumptions on workers. (i) We
only consider workers whose historical accuracy pw is no
less than a preset threshold (pw ≥ 66% throughout this
paper). Workers whose historical accuracies are below this
threshold are viewed as spams and can be reasonably ignored
by the platform. (ii) Each worker has the same capacity, which
is estimated by the platform based on surveys or human-
computer interaction studies [10]. Any worker who is willing
to answer more questions during each check-in can be viewed
as multiple workers.

Definition 3 (Predicted Accuracy): The predicted accu-
racy that a worker w performs task t is measured by an
accuracy function Acc(w, t) ∈ [0, 1], which takes the historical
accuracy and location of worker and the location of the task
as input.

In this work, we assume an accuracy function as follows.

Acc(w, t) =
pw

1 + e−(dmax−‖lw,lt‖)
(1)

where dmax is the largest Euclidean distance that workers are
able to perform the tasks with high accuracy. Other accuracy
functions can also apply in our problem.

Definition 4 (Task Completion): Given a task t and a set
of workers Wt assigned to t, the platform determines the result
of t by taking a weighted majority voting among the workers.
That is, `t = sign(

∑
w∈Wt

weightw,t`w,t), `w,t ∈ {+1,−1}.
We call a task which reaches the error rate ε as completed.

Note that according to the Hoeffding’s inequality [11],
when weightw,t = 2Acc(w, t)− 1 and

∑
w∈Wt

(2Acc(w, t)−
1)2 ≥ 2 ln(1/ε), the probability of an error in task t is less
than ε. We define δ = 2 ln(1/ε) for brevity. Based on the
above definition of δ, each task should be performed at least
dδe times to obtain the tolerable error rate. Since this paper
studies the minimal number of workers (i.e., latency) when
all tasks are completed, we assume that workers will accept
and answer all the questions assigned to them within a short
time. This assumption is reasonable because any worker who
is unwilling to accept the assigned questions and answer them
(i.e., whose historical accept rate and answer rate are low) can
be ignored automatically by the platform. We also assume that
all tasks can reach the tolerable error rate.

Definition 5 (Task Latency): The latency of a task is as-
sessed by the completion time of a task. Specifically, the
latency of a task Lt is denoted as the index of the last person
on the platform who performs t. Note that Lt = maxw∈Wt

ow,
if
∑
w∈Wt

Acc∗(w, t) ≥ δ.

B. LTC in Offline Scenario

Based on the basic concepts above, we define the LTC
problem in the offline scenario as follows.

Definition 6 (Offline LTC): Assume a set of tasks T and
a tolerable error rate ε. Each task t has a location lt. Also
assume a set of workers W , where each worker w is associated

with an index ow, a location lw, a historical accuracy pw
and capacity K. Furthermore assume an accuracy function
Acc(w, t) which predicts the accuracy of w performing t.
The latency-orientated task completion (LTC) problem in the
offline scenario is to find an arrangement M among tasks
and workers to minimize the maximum latency of all tasks
MinMax(M) = maxt∈T maxw∈Wt

ow that meets the fol-
lowing constraints.

• Invariable constraint: once a task t is assigned to a
worker w, the arrangement (t, w) cannot be revoked.
This constraint is reasonable because the worker will
see or answer the task immediately once the task is
assigned to him/her.

• Capacity constraint:
∑
t∈T 1(w ∈ Wt) ≤ K,∀w ∈

W .

• Error rate constraint:
∑
w∈Wt

Acc∗(w, t) ≥ δ, ∀t ∈ T
with δ = 2 ln(1/ε), Acc∗(w, t) = (2Acc(w, t)− 1)2.

Theorem 1: The offline LTC problem is NP-hard.

Proof: We prove the NP-hardness of the offline LTC
problem leveraging the 3-partition problem. The 3-partition
problem [12] is a well-known NP-complete problem. We
first reduce the 3-partition problem to the decision version
of the offline LTC problem. An instance of the 3-partition
problem is as follows. Given a list of 3m positive integers
X = {x1, x2, · · · , x3m} with

∑3m
i=1 xi = mB and each xi

satisfying B
4 < xi <

B
2 , the 3-partition problem aims to decide

whether it is possible to partition X into m triples such that
each one sums to exactly B. According to an instance of 3-
partition problem, an instance of the offline LTC problem can
be constructed as follows:

(1) The m triples of the 3-partition problem correspond to the
m tasks with threshold ε = e−

1
2 , δ = 1.

(2) The 3m elements of the list X correspond to 3m workers.
(3) For a worker wi, the function Acc∗(, ) has the same value

as Acc∗(wi, t) = xi
B ∈ ( 1

4 ,
1
2 ),∀t ∈ T , but a worker can

only preform K = 1 task.

Given an instance of the above problem, we want to de-
cide whether there is a feasible arrangement M such that
MinMax(M) = 3m.

Next, we prove that an instance of the 3-partition problem
is YES if and only if an instance of the offline LTC problem is
YES. Since the value of Acc∗(w, t) falls into the range ( 1

4 ,
1
2 ),

each task has to be performed by at least d δ
maxw,t Acc∗(w,t)

e >
d1/ 1

2e = 3 workers. However, there are only 3m workers but
m tasks. So each task must be performed by exactly 3 workers
and each worker must perform exactly one task (K = 1). Oth-
erwise at least one task cannot meet the error rate constraint.
Thereby, if there is a feasible arrangement for the offline LTC
problem, we will get m triples. Since a worker w performs
all the tasks with the same value Acc∗(w, .) = xi

B and only
one task is assigned to this worker, each element xi

B , xi ∈ X
appears only once in the arrangement M . Therefore, the m
triples are the partition of X ′ = {xiB |xi ∈ X} because they
are disjoint and they can cover X ′. Then we need to prove
that every Acc∗ sum of these triples with their workers is
exactly δ = 1. Since the arrangement is feasible, each of the



m sums is no less than δ = 1 and the sum of all these values
is

∑
xi∈X

xi
B =

∑
xi∈X

xi

B = m. Thus, each of these sum is
exactly 1. That is, the sum of these three x of the function
Acc∗ is exactly B. Hence we obtain a feasible instance of the
3-partition problem via the offline LTC problem.

From the justification above, the decision version of the
offline LTC problem is NP-complete and the offline LTC
problem is NP-hard.

C. LTC in Online Scenario

We finally define the LTC problem in the online scenario.

Definition 7 (Online LTC): Assume a set of tasks T , and a
tolerable error rate ε, where each task t is at location lt. Also
assume a set of workers W whose information is unknown
before they appear, where each worker w is associated with
an index ow, a location lw, a historical accuracy pw and a
constant capacity K. Further assume an accuracy function
Acc(w, t) which predicts the accuracy of w performing t. The
online LTC problem is to find an arrangement M among tasks
and workers to minimize the maximum latency of all tasks
MinMax(M) = maxt∈T maxw∈Wt

ow such that

• Temporal constraint: the assignment for a new worker
w must be decided immediately when s/he appears
(i.e., the deadline of the worker is a short time after
s/he appears).

• The constraints of offline LTC are also satisfied.

Compared with the offline version, the major difference
is that the platform always has no information (e.g., loca-
tion) about the next coming worker. Furthermore, in real
applications such as Google Map [13] and Facebook [5], the
assignments for each worker should be done immediately when
s/he appears. This is because (i) the platform knows the exact
place of the worker when s/he appears and his/her location
is an important factor to the quality of tasks [14]; and (ii)
workers will not stay long on spatial crowdsourcing platforms.
For example, a worker may continue to drive after searching
a route from Google Map [13] or have dinner after posting
pictures about the restaurants to Facebook [5]. So the platform
has to immediately send the worker no more than K questions
about the nearby POIs. Therefore, the online LTC problem is
more challenging.

As next, we first design algorithms for the offline LTC
problem and then explore solutions to the online LTC problem.
Note that the algorithms need to output both the arrangements
among tasks and workers, as well as the maximum latency of
all tasks. The maximum latency of all tasks can be measured
by the last index of the worker who performs the task before
the set of tasks are completed. Hence we will use the last
(maximum) index of the worker in the task arrangement as
the output of the algorithms in the rest of this paper.

Table III lists the notations used throughout the paper.
III. OFFLINE SCENARIO

Since the offline LTC problem is NP-hard, we propose an
approximate algorithm based on minimum cost flow. Com-
pared with the optimal latency, our algorithm has a approxi-
mation ratio of 7.5. We first propose Theorem 2 to evaluate
the lower bound and upper bound of the maximum latency.

TABLE III: Summary of symbol notations
Notation Description
T,W a set of tasks and workers
lt, lw the location of task and worker
K the capacity of each worker
ε, δ the tolerable error rate of each task, the value of 2 ln(1/ε)
pw the historical accuracy of worker

Acc(w, t) the predicted accuracy for a worker performing a task
Acc∗(w, t) the value of (2Acc(w, t)− 1)2

∆ the total increasement of value Acc∗(., .) for all tasks

Theorem 2 (Bounds of Maximum Latency of All Tasks):
Assume |T | ≥ K, the maximum latency of all tasks in the
offline LTC problem has a lower bound of |T |δK and an upper
bound of 10|T |δ

K + |T |
K + 1.

Proof: According to the McNaughton’s Rule [15], it is
easy to make an optimal arrangement when every worker has
the same accuracy for each task, i.e., Acc∗(w, t) = r, ∀w ∈
W, t ∈ T . Under this assumption, the maximum latency of all
tasks is max{d |T |·d

δ
r e

K e, d δr e} and the optimal arrangement can
be found in polynomial time. We can get the lower and upper
bounds of the maximum latency of all tasks by replacing r with
maxAcc∗(, ) = (2 ·maxAcc(, )− 1)2 = (2 · 1− 1)2 = 1 and
minAcc∗(, ) = (2 ·minAcc(, )− 1)2 = (2 · 0.66− 1)2 > 0.1,
respectively.

boundlower ≥ max{d
|T | · d δ1e

K
e, δ}

≥ max{d |T |δ
K
e, δ}

≥ |T |δ
K

boundupper ≤ max{d
|T | · d δ0.1e

K
e, d δ

0.1
e}

≤ max{ |T |δ
0.1K

+
|T |
K

+ 1, d δ
0.1
e}

≤ 10|T |δ
K

+
|T |
K

+ 1

Basic Idea. The idea of our proposed algorithm is to iter-
atively select a batch of workers and make an local optimal
arrangement for these workers. Since in the offline LTC prob-
lem, the information about each worker is known beforehand,
the optimal arrangement between a batch of workers and
the uncompleted tasks can be reduced to the minimum cost
flow(MCF) problem as explained shortly. Thus, the solution
of the reduced MCF instance indicates the assignment for this
batch of workers. Motivated by Theorem 2, we use the lower
bound of the optimal result(e.g., |T |δK workers) as the size of
each batch to get the approximation guarantee.

Algorithm Details. We present the detailed algorithm, MCF-
LTC, for the offline LTC problem as follows.

Given an instance of the offline LTC problem with workers
W ′ in a batch, we first construct a flow network GF =
(NF , EF ), where NF = W ′ ∪ T ∪ {st, ed}. st is a source
node and ed is a sink node. For each pair w ∈ W ′, t ∈
T , there is an edge eF (w, t) ∈ EF from w to t with
eF (w, t).cost = −Acc∗(w, t) and eF (w, t).capacity = 1. For
each w ∈ W ′, there is an edge eF (st, w) ∈ EF from st to
w with eF (st, w).cost = 0 and eF (st, w).capacity = K. For
each t ∈ T , there is an edge eF (t, ed) ∈ EF from t to ed



Algorithm 1: MCF-LTC
input : T,W,Acc∗(., .),K, ε
output: Maximum index of worker in a feasible

arrangement M
1 δ ← 2 ln (1.0/ε), Q← ∅,m← |T |dδe

K ;
2 S ← {0, . . . , 0} ; /* S stores accumulated
value for each task */

3 for i← 2 to d |W |m e do
4 W ′ ← next bmc(b1.5mc if i = 2) workers from W ;
5 construct GF = (NF , EF ) according to (W ′, T, S);
6 SSPA(GF ) and construct M ′ accordingly;
7 update the S according to M ′;
8 foreach w ∈W ′ do
9 foreach i← 1 to |T | do

10 if T [i] has not reached δ and w does not
perform T [i] according to M ′ then

11 push Acc∗(w, T [i]) with index i into Q;
12 maintain size of Q under capacity of w;

13 while Q 6= ∅ do
14 extract an element with index i from Q;
15 S[i]← S[i] +Acc∗(w, T [i]),M ′ ←

M ′ ∪ (w, T [i]);

16 M ←M ∪M ′;
17 if all T have reached δ then break;
18 return Maximum index of worker in M

with eF (t, ed).cost = 0 and eF (t, ed).capacity = dδ − S[t]e.
Here S[t] indicates the amount of Acc∗ that t has already got.
Note that we formulate an MCF problem, and we can get
a temporary arrangement M ′ by solving the MCF problem.
Specifically, we apply the Successive Shortest Path Algorithm
(SSPA) to calculate the minimum cost flow. Similar algorithms
can also apply, but SSPA is suitable for large-scale data and
many-to-many matching with real-valued arc costs [16].

Note that the capacity of the edge eF (t, ed) is tightly
bounded by dδ − S[t]e. Therefore, it is possible that some
workers in the same batch can still perform tasks (i.e., fewer
than K tasks have been assigned to the worker using M ′).
Hence in the next step, we allocate uncompleted tasks to
workers who can still perform tasks. For these workers in the
same batch, the most reliable tasks that the worker has never
performed before are assigned to him/her.

Algorithm 1 shows the procedure of our MCF-LTC algo-
rithm. In lines 1-2, we initialize the parameters. Specifically,
δ is initialized based on the Hoeffding’s inequality [11]. It
represents the minimal accumulated Acc∗ of each task. Q is
a heap to maintain the largest Acc∗ for each worker and is
empty at the beginning. m is set as the lower bound of the
maximum latency in Theorem 2, which means m workers are
always enough to finish all the remaining tasks if the accuracy
of each worker is 100%. We use S to store the accumulated
Acc∗ for each task. In lines 4-7, we first construct a flow
network GF and calculate the minimum cost flow on GF
among the workers and tasks in the current batch and then
obtain a temporary matching M ′. In lines 8-15, we greedily
assign more tasks to the workers who can still perform tasks
and update M ′ accordingly. Specifically, for each worker, we
maintain the most reliable tasks using a heap Q in lines 9-

(a) Flow graph constructed (b) Minimum cost flow results

Fig. 2: Illustrated example of MCF-LTC

12. Then in lines 13-15, the accumulated values of Acc∗ for
these tasks increase accordingly. Finally the arrangement M
is updated in line 16 and the maximum index of workers in
M is output as the latency to compete all the tasks.

Example 2: Back to our running example in Example 1,
assume the tolerable error rate is ε = 0.2. Fig. 2a shows
the flow network GF . Based on line 1 in Algorithm 1,
δ = 2 ln (1/0.2) = 3.22,m = |T |dδe

K = 6. Since the
batch size in the first round is b1.5mc = 9 > 8, all the
workers should be added to the flow network in the first round.
Specifically, the capacity between source node st and any
worker wi is K = 2 and the capacity between any task tj
and sink code ed is dδ − S[j]e = d2 ln (1/0.2) − 0e = 4.
Since the predicted accuracy for w1 to perform t1 is 0.96
(see Table I), the cost between w1 and t1 is −Acc∗(w1, t1) =
−(2Acc(w1, t1)− 1)2 = −(2 · 0.96− 1)2 ≈ −0.85. The flow
graph is constructed after all the edges between wi and tj are
added in the similar way. After running SSPA on this cost flow
network, an arrangement is formed using the edges between
wi and tj with non-zero flow, which is shown as Fig. 2b .
According to this arrangement, all tasks have been completed,
so there will be no updates in the next step. Therefore, the
result of Algorithm 1 is 6.

Approximation Ratio. Next we study the approximation ratio
(in terms of the latency to complete all tasks) of MCF-LTC.
Note that a high accuracy is preferred in the real platforms like
Facebook [1] and Foursquare [2]. Therefore we assume that the
tolerable error rate is no more than a threshold (i.e., ε ≤ 0.22)
for brevity in the following analysis. This assumption is also
equivalent to a preferred accuracy which is no less than 78%
(i.e., 1− 0.22).

Lemma 1: Assume ε ≤ e−1.5 ≤ 0.22, δ = 2 ln (1.0/ε) ≥
3, if the latency of the optimal arrangement is more than
b 1.5|T |dδe

K c, then the approximation ratio is 7.112.

Proof: Based on the above assumption, the optimal ar-
rangement needs at least another worker to complete all the
tasks. According to Theorem 2, our algorithm may need
10|T |δ
K + |T |K +1 workers in the worst case. Note that the number

of workers required is proportional to the maximum latency to
complete all tasks. Thus, the approximation ratio is

10|T |δ
K + |T |

K + 1

b 1.5|T |δ
K c+ 1

< 6.667+
1

1.5δ
(1+

K

|T |
) ≤ 5+

2

4.5
< 7.112



Lemma 2: Assume ε ≤ e−1.5≤ 0.22, δ = 2 ln (1.0/ε) ≥ 3,
If each task has been performed by dδe workers from the first
b 1.5|T |dδe

K c ones, Algorithm 1 will get at least 3
4 of the Acc∗

increase of the optimal arrangement.

Proof: Since the capacity between any task tj and ed is
no more than dδe, the absolute value of the cost from SSPA
is no less than that of the optimal arrangement. However, this
does not mean Algorithm 1 will increase Acc∗ by the same
amount as the optimal arrangement. This is because when δ =
bδc+ 10−9, Algorithm 1 might waste 1− 10−9 ≈ 1 for each
task in the worst case (e.g., dδe workers with Acc∗(, ) = 1
perform this task). Therefore, the actual increase in Acc∗ of
Algorithm 1 is at least bδc/dδe ≥ 3

4 of the absolute value of
the minimum cost. Thus Algorithm 1 will get at least 3

4 of the
Acc∗ increase of the optimal arrangement.

Lemma 3: If the latency of optimal arrangement is no more
than b 1.5|T |dδe

K c, the sum of Acc∗ in Algorithm 1 will be at
least 1

2 |T |δ.

Proof: Since each task in the optimal arrangement sat-
isfies the error rate constraints, each task should have been
performed by no fewer than dδe workers. Otherwise the accu-
mulation of Acc∗ of at least one task is less than δ. Meanwhile,
since there are b 1.5|T |dδe

K c workers, all these workers can
perform tasks by at most 1.5|T |dδe times in total. Then the
sum of the largest dδe increase in Acc∗ of each task is at least
2|T |δ

3 . According to Lemma 2, Algorithm 1 would increase the
accumulated Acc∗ to at least |T |δ2 after the arrangement among
the first b 1.5|T |dδe

K c workers.

Lemma 4: Assume ε ≤ e−1.5≤ 0.22, δ = 2 ln (1.0/ε) ≥ 3,
if the latency of the optimal arrangement is no less than |T |δ
using the arrangement from the first b 1.5|T |dδe

K c workers, the
approximation ratio is 7.5.

Proof: According to Lemma 3, the accumulated Acc∗ in
Algorithm 1 will reach at least |T |δ2 after arrangement among
the current workers. Then according to Theorem 2, it needs at
most another

1
2 ·10|T |δ
K + |T |

K + 1 workers. Thus, the ratio is

b 1.5|T |dδe
K c+

1
2 ·10|T |δ
K + |T |

K + 1
|T |δ
K

< 6.5 +
1

δ
(1 +

K

|T |
) < 7.5

Theorem 3: The approximation ratio of Algorithm 1
(MCF-LTC) is 7.5.

Proof: According to Lemma 1 and Lemma 4, the ratio of
Algorithm 1 is max{7.112, 7.5} = 7.5.

Complexity Analysis. Lines 4-7 take O(δ|T | · ( |T |
2δ
K + (|T |+

|T |δ
K ) log (|T |+ |T |δ

K ))) = O(|T |3) time and lines 8-15 take
O( |T |δK · |T | logK) = O(|T |2) time. The iteration takes
O( |W |Kδ|T | ) batches at most. The total time cost is O( |W |Kδ|T | ·
(|T |3 + |T |2) = |W ||T |2).

IV. ONLINE SCENARIO

In this section, we design two algorithms to solve the online
LTC problem with competitive ratio guarantees. In the online
scenario, the decision for each new worker should be made

Algorithm 2: Largest Acc First (LAF)
input : T,W,Acc∗(., .),K, ε
output: Maximum index of worker in a feasible

arrangement M
1 δ ← 2 ln (1.0/ε), Q← ∅;
2 S ← {0, . . . , 0} ; /* S stores accumulated
value for each task */

3 foreach new arrival worker w do
4 foreach i← 1 to |T | do
5 if T [i] has not reached δ then
6 push Acc∗(w, T [i]) with index i into Q;
7 maintain size of Q under capacity of w;

8 while Q 6= ∅ do
9 extract an element with index i from Q;

10 S[i]← S[i]+Acc∗(w, T [i]),M ←M∪(w, T [i]);
11 if all T have reached δ then break;
12 return Maximum index of worker in M

immediately on his/her arrival, and we adopt a greedy strategy
for online decision making. We first propose the Largest Acc
First (LAF) algorithm, which greedily selects the tasks with
the largest Acc∗ for each new worker. To avoid local optimal,
we further propose a hybrid greedy algorithm, Average And
Max (AAM), which has a competitive ratio of 7.738.

A. Largest Acc First (LAF) Algorithm
Largest Acc First (LAF) is a greedy algorithm for the

online LTC problem. The idea is to select the tasks with the
highest Acc∗ for every worker. Every time a worker shows up,
the tasks with the K largest Acc∗ are assigned to the worker.
LAF stops when all the tasks have reached δ.

Algorithm Details. When a new worker appears, the LAF
algorithm enumerates all the remaining tasks and calculate
the Acc∗ value if the worker is to perform that task. We use
a heap to maintain tasks with the K largest Acc∗ for each
worker. Once all the tasks reach the tolerable error rate (i.e.,
task completed), the algorithm stops.

Algorithm 2 illustrates the LAF algorithm. In lines 4-7,
the algorithm goes through all the remaining tasks to find the
K tasks with the highest Acc∗ for the new worker w. These
K pairs of Acc∗ and tasks are put into heap Q. In lines 8-
10, we update the accumulated values S for each task and the
arrangement M according to the selected pairs in Q. Each new
worker is assigned at most K tasks on his/her arrival. Finally
the algorithm outputs the maximum index of workers in the
arrangement.

Example 3: Assume the same settings in Example 1. When
w1 shows up, LAF calculates Acc∗(w1, t) = {(2·0.96−1)2, (2·
0.98−1)2, (2 ·0.96−1)2} = {0.85, 0.92, 0.85}. Since K = 2,
only two tasks with the largest Acc∗ (i.e., t2 and t1) will
be kept in the heap. t2 and t1 are assigned to w1 and the
algorithm continues to select two tasks that have not reached
δ for the next worker, Similarly, t1 and t2 are also assigned
to w2, w3, w4. Then the accumulated values of Acc∗ becomes
S = {3(2 · 0.98 − 1)2 + (2 · 0.96 − 1)2, 2(2 · 0.96 − 1)2 +
2(2 · 0.98 − 1)2, 0} = {3.61, 3.54, 0}, so t1 and t2 satisfy
the requirement of tolerable error rate. Since only t3 has not
satisfied the requirement, LAF would keep assigning t3 to



other workers. Finally, t3 would satisfy the requirement after
w8 performs it. By running LAF, 8 workers are needed.
Competitive Ratio. Next we study the competitive ratio of the
LAF algorithm.

Theorem 4: Without any assumption, the competitive ratio
of any deterministic online algorithm to solve the online LTC
problem is no less than 5.5.

Proof: Suppose δ = 1, |T | > 2,K = 1. Further assume
the first worker can perform two tasks (t1 and t2) equally
accurate with Acc∗(, ) = 1. Without loss of generality, t1
is assigned to this worker. In the adversarial model, the next
worker may be good at t1 with Acc∗(, ) = 1 but poor at t2
with minw∈W,t∈T Acc

∗(w, t) = 0.1. Obviously, the optimal
arrangement only needs 2 workers for the two tasks (w1

performs t2 and w2 performs t1). However, no matter which
task between t1 and t2 is assigned to w1, the adversarial
model will assign a worker who is poor at the remaining task.
Accordingly, the competitive ratio is at least 1+ δ

0.1

2 = 5.5.

Theorem 4 shows that it is difficult to obtain the optimal
arrangement when there are multiple equal values of Acc∗.
Yet the theorem indicates that we can analyze the competitive
ratio of LAF by calculating the proportion of Acc∗ values that
could have been achieved, i.e., the loss of Acc∗ values.

Lemma 5: Let bδc = k. LAF will get no less than k
2k+1

of the total increase of Acc∗ in the optimal arrangement from
the first b |T |dδeK c workers.

Proof: Denote the total Acc∗ increase by Algorithm 2
as ∆LAF and the total Acc∗ increase by the optimal ar-
rangement as ∆OPT . X = {x1, x2, · · · , x|T |} and Y =
{y1, y2, · · · , y|T |} represent the Acc∗ increase of every task
by Algorithm 2 and the optimal arrangement, respectively.
Suppose to the contrary, ∆LAF < k

2k+1∆OPT . It means
2k+1
k

∑|T |
i=1 xi <

∑|T |
i=1 yi. If dδe = k, then every time we

pick k largest values (e.g., Acc∗(, ) = 1), in the worst case we
miss other k largest values as in the proof of Theorem 4. If
dδe = k + 1 (e.g., δ = k + 10−9), then every time we pick
k+ 1 largest values, only the first k values may be significant.
In this case we need any worker instead of the current highly
qualified worker. So in the worst case, we may miss other k+1
largest values after picking k + 1 values (one is with a small
Acc∗ value). Accordingly, we may lose at most k+1

2k+1 of these
large values. Without loss of generality, assume Algorithm 2
misses the tasks {t1, t2, · · · , tj}. Then it is obvious that

|T |∑
i=j+1

xi ≥
|T |∑

i=j+1

yi (2)

j∑
i=1

xi +
k + 1

k

|T |∑
i=j+1

xi ≥
j∑
i=1

yi (3)

After adding these two inequations, we have
j∑
i=1

xi +
2k + 1

k

|T |∑
i=j+1

xi ≥
|T |∑
i=1

yi (4)

We also know that
|T |∑
i=1

yi >
2k + 1

k

|T |∑
i=1

xi (5)

This contradicts with the fact that
|T |∑
i=1

xi +
2k + 1

k

|T |∑
i=j+1

xi <
2k + 1

k

|T |∑
i=1

xi (6)

Hence LAF gets no less than k
2k+1 of the total Acc∗ increase

in the optimal arrangement from the first b |T |dδeK c workers.

Theorem 5: Assume ε ≤ e−1.5, δ = 2 ln (1.0/ε) ≥ 3, the
competitive ratio of Algorithm 2 (LAF) is 7.967.

Proof: Similar to the analysis of Theorem 3, we analyze
the ratio from two sides ∆OPT ≥ ρ|T |δ and ∆OPT < ρ|T |δ
and infer the proper ρ to calculate the competitive ratio.

Without loss of generality, we assume ∆OPT ≥ ρ|T |δ from
the first b |T |dδeK c workers. According to Theorem 2, the optimal
latency is more than |T |δK . Also, LAF should have more than
3
7 · ρ|T |δ increase in Acc∗ based on Lemma 5(bδc ≥ 3). Thus

according to Theorem 2, LAF needs less than (1− 3ρ
7 )·10|T |δ
K +

|T |
K + 1 workers. Therefore the competitive ratio is

ratio ≤
(1− 3ρ

7 )·10|T |δ
K + |T |

K + 1
|T |δ
K

≤ 10(1− 3ρ

7
) +

1

δ
(1 +

K

|T |
) (7)

Next, according to Theorem 2, if ∆OPT < ρ|T |δ, the optimal
arrangement still needs at least (1− ρ) |T |δK + 1 workers. Thus
the competitive ratio becomes

ratio ≤
10 |T |δK + |T |

K + 1

b |T |dδeK c+ (1− ρ) |T |δK + 1

≤
10 |T |δK + |T |

K + 1

(2− ρ) |T |δK

≤ 10

2− ρ
+

1

(2− ρ)δ
(1 +

K

|T |
)

≤ 10

2− ρ
+

1

δ
(1 +

K

|T |
)

Finally, the competitive ratio is max{1− 3ρ
7 ,

1
2−ρ}·10+ 1

δ (1+
K
|T | ). When ρ = 13−

√
85

6 , ratio ≤ 0.730 · 10 + 2
3 ≤ 7.967.

Complexity Analysis. The loop of lines 4-7 takes
O(|T | logK) time and the loop of lines 8-10 takes
O(K logK) time. Since the main loop of line 3 is at most |W |
times, the total time cost is O(|W |(|T | logK + K logK)) =
O(|W ||T | logK) = O(|W ||T |).

B. Average And Max (AAM) Algorithm

The Average and Max (AAM) algorithm is a hybrid
greedy algorithm inspired by the McNaughton’s Rule [15].
The maximum completion time of all different processes is
not only determined by the average execution time but also
by the longest execution time. Similarly, the bottleneck to
complete all tasks might be some difficult tasks, which need
many workers to perform before the tasks can reach the
tolerable error rate. Hence to complete all tasks with minimal
numbers of workers, it is important to (i) detect and start



performing difficult tasks early and (ii) finish other tasks with
appropriate workers. AAM first uses the Largest Gain First
(LGF) strategy (See Lemma 6) and switches to the Largest
Remaining First (LRF) strategy when the “difficult” tasks
become the bottleneck.

Algorithm Details. The key step in AAM is to maintain
(i) the average number of workers needed to finish all tasks
(“average” for short) and (ii) the maximum number of workers
needed in any remaining task (“maximum” for short). AAM
switches between the LGF and the LRF strategies based on
these two values.

If the “average” is larger than the “maximum”, it indicates
that the total number of tasks is the bottleneck. Then AAM
adopts the LGF strategy. The LGF strategy chooses the most
profitable tasks for the worker. Here the most profitable
task means the largest amount of increase in Acc∗ without
exceeding δ. Note that LGF is different from the LAF strategy
proposed in Sec. IV-A. LAF selects the tasks with the largest
values of Acc∗ for each worker without considering the current
status of the task. For example, when a task only needs a small
value of Acc∗ to reach δ, it is more reasonable to arrange
some other tasks for this highly accurate worker. The LGF
strategy is designed to account for this issue. For each task,
LGF will select the highly accurate worker at the beginning
(i.e., when the accumulated Acc∗ is much smaller than δ).
When the accumulated Acc∗ is close to δ, LGF will select a
worker who can just cover the increase in Acc∗ needed for the
task. Thus the highly accurate workers are not wasted.

If the “average” is no larger than the “maximum”, it
indicates that some tasks may need large amounts of workers,
and they are the bottleneck to complete all tasks quickly. In
this case AAM adopts the LRF strategy. The LRF strategy
chooses tasks that need more increase in Acc∗ to reach δ so
that they can be finished quickly.

Algorithm 3 illustrates the procedure. In lines 4-5, we
calculate the average number avg and maximum remaining
number maxRemain. In lines 6-12, AAM goes through all
tasks to find the best K selections for the new worker w
based on LGF or LRF. When the best selection is based on
the highest gain(i.e., LGF), which is calculated as in line 9.
Specifically, the gain is the minimum between “the increase in
accumulated accuracy if the task is performed by the worker
(i.e., Acc∗(w, T [i]))” and “how much accuracy is needed for
this task to reach the tolerable error rate (i.e., δ−S[i])”. When
the best selection is based on the bottleneck of the uncompleted
tasks(i.e., LRF), whic is calculated as in line 11. Specifically,
we use “how much accuracy is still needed for this task to
reach the tolerable error rate (i.e., δ − S[i])” to denote the
difficulty of the task. These K pairs are maintained in heap
Q. In lines 13-15, the selected tasks are extracted from the
heap and AAM updates the arrangement M and other state
parameters. Finally, the algorithm outputs the maximum index
of workers in the arrangement.

Example 4: Back to the settings in Example 1. For the
first three workers, the process is the same as in LAF (see
the Example 3). Now the accumulate values of Acc∗ is S =
{(2 · 0.96− 1)2 + 2(2 · 0.98− 1)2, 2(2 · 0.96− 1)2 + (2 · 0.98−
1)2, 0} = {2.69, 2.62, 0}. Thus according to line 4-5, avg =
(3.22−2.69)+(3.22−2.62)+3.22

2 = 2.175 and maxRemain = δ =

Algorithm 3: Average And Max (AAM)
input : T,W,Acc∗(., .),K, ε
output: Maximum index of worker in a feasible

arrangement M
1 δ ← 2 ln (1.0/ε), Q← ∅;
2 S ← {0, . . . , 0} ; /* S stores accumulated
value for each task */

3 foreach new arrival worker w do
4 avg ←

∑|T |
i=1 (δ−S[i])

K ;
5 maxRemain← max

|T |
i=1 (δ − S[i]);

6 for i← 1 to |T | do
7 if T [i] has not reached δ then
8 if avg ≥ maxRemain then
9 push min{Acc∗(w, T [i]), δ − S[i]} with

index i into Q;
10 else
11 push δ − S[i] with an index i into Q;
12 maintain size of Q under capacity of w;

13 while Q 6= ∅ do
14 extract an element with index i from Q;
15 S[i]← S[i]+Acc∗(w, T [i]),M ←M∪(w, T [i]);
16 if all T have reached δ then break;
17 return Maximum index of worker in M

3.22. Because avg < maxRemain, AAM switches to the
LRF strategy. Hence both t3 and t2 are assigned to w4 and t2
would reach the requirement of error rate. Since only 2 tasks
are left, t1 and t3 are assigned to w5 and t1 would reach the
requirement of error rate. t3 could reach the requirement of
error rate after sending it to w6 and w7. Finally, the output of
AAM is 7, which needs one fewer worker than LAF algorithm.
Competitive Ratio. Next, we study the competitive ratio of
Algorithm 3 (AAM).

Lemma 6: Algorithm 3 will always adopt the LGF strategy
for the first (|T |−K)δ

K workers.

Proof: Suppose to the contrary, the strategy firstly
switches to the LRF when the i-th worker appears, where
i < (|T |−K)δ

K . This indicates avg < maxRemain. Since only
i− 1 workers have come, the minimum average value can be

avg ≥ |T |δ − (i− 1) ·K · 1
K

>
|T |δ +K − (|T |−K)δ

K ·K
K

>
K(δ + 1)

K
= δ + 1

However, maxRemain must be no more than δ, which contra-
dicts with the fact that avg should be less than maxRemain.
It follows that AAM applies the LGF strategy for the first
(|T |−K)δ

K workers.

Lemma 7: Let bδc = k. AAM will get no less than 1
2 of

the total Acc∗ increase in the optimal arrangement from the
first b |T |dδeK c workers.

Proof: Denote the total Acc∗ increase using LGF as
∆LGF and the total Acc∗ increase using AAM as ∆AAM .



X = {x1, x2, · · · , x|T |} and Y = {y1, y2, · · · , y|T |}, which
represent the Acc∗ increase of every task using AAM and
the optimal arrangement, respectively. Suppose to the contrary,
∆LGF < 1

2∆OPT . It means 2
∑|T |
i=1 xi <

∑|T |
i=1 yi. Different

from Lemma 5, each time LGF picks k tasks to workers, while
the optimal arrangement may pick the other k tasks with the
same gain. Note that we select tasks based on the gains rather
than purely the accumulated accuracies (Acc∗). The tasks
which have almost reached the tolerable error rate will not be
assigned the highly accurate workers, which is the case with
LAF. Accordingly, we may lose at most k

2k = 1
2 of these large

values. Without loss of generality, assume {t1, t2, · · · , tj} are
the tasks we miss. Then we have

|T |∑
i=j+1

xi ≥
|T |∑

i=j+1

yi (8)

j∑
i=1

xi +

|T |∑
i=j+1

xi ≥
j∑
i=1

yi (9)

After adding these two inequations, we have
j∑
i=1

xi + 2

|T |∑
i=j+1

xi ≥
|T |∑
i=1

yi. (10)

Also
|T |∑
i=1

yi > 2

|T |∑
i=1

xi. (11)

This contradicts with the fact that
|T |∑
i=1

xi + 2

|T |∑
i=j+1

xi < 2

|T |∑
i=1

xi (12)

If follows that ∆LGF ≥ 1
2∆OPT According to Lemma 6,

∆LGF = ∆AAM for the first b |T |dδeK c workers. Thus ∆AAM ≥
∆OPT

2 for the first b |T |dδeK c workers.

Theorem 6: Assume ε ≤ e−1.5, δ = 2 ln (1.0/ε) ≥ 3, the
competitive ratio of Algorithm 3 (AAM) is 7.738.

Proof: Similar to Theorem 5, when the total Acc∗ increase
of the optimal arrangement is more than ρnδ, AAM will need
less than (1− ρ2 )·10|T |δ

K + |T |K +1 workers according to Theorem 2
and Lemma 7. In this condition, the competitive ratio is

(1− ρ2 )·10|T |δ
K + |T |

K + 1
|T |δ
K

< 10(1− ρ

2
) +

1

δ
(1 +

K

|T |
)

Otherwise the optimal arrangement would need at least another
(1−ρ)|T |δ

K + 1 workers. Thus, the competitive ratio is
10|T |δ
K + |T |

K + 1

b |T |dδeK c+ (1−ρ)|T |δ
K + 1

≤ 10

2− ρ
+

1

δ
(1 +

K

|T |
)

Finally, when ρ = 2 −
√

2, the competitive ratio is max{1 −
ρ
2 ,

1
2−ρ} · 10 + 2

3 ≤ 7.738.

Complexity Analysis. The calculation of the average value
and maximum value in lines 4-5 takes O(|T |) time. The loop
of lines 6-12 takes O(|T | logK) time and the loop of lines 13-
15 takes O(K logK) time. Since the main loop of line 3 is at
most |W | times, the total time cost is O(|W |(|T |+|T | logK+
K logK)) = O(|W ||T | logK)) = O(|W ||T |).

TABLE IV: Synthetic dataset
Factor Setting
|T | 1000, 2000, 3000, 4000, 5000
|W | 40000
K 4, 5, 6, 7, 8

Historical Normal: µ = [0.82, 0.84, 0.86, 0.88, 0.90], σ = 0.05
Accuracy Uniform: mean = [0.82, 0.84, 0.86, 0.88, 0.90]

ε 0.06, 0.10, 0.14, 0.18, 0.22

Scalability |T | = 10K, 20K, 30K, 40K, 50K, 100K
|W | = 400K

TABLE V: Real datasets
Dataset |T | |W | K ε Accuracy

New York 3717 227428 6 [0.06, 0.10, 0.14, 0.18, 0.22] µ = 0.86
Tokyo 9317 573703 σ = 0.05

V. EXPERIMENTAL STUDY

In this section, we evaluate the proposed algorithms on both
synthetic and real-world datasets in terms of effectiveness (the
maximum index of workers, i.e., delay to complete all tasks)
and efficiency (running time and memory footprint).
A. Experiment Setup

Datasets. We utilize a synthetic dataset to evaluate the perfor-
mance in diverse settings. Table IV summarizes the settings of
the synthetic dataset. The default settings are marked in bold.
The locations of tasks and workers are randomly generated
from a 1000 × 1000 2D grid. Each grid represents a 10
(meter) × 10 (meter) square. We also set dmax = 30(i.e., 300
meter) for both synthetic datasets and real datasets. The setting
of dmax comes from the real datasets which are collected
by [17]. We also use the real datasets in our experiments.
[17] studies the region preference (i.e., the range of frequent
activities around the check-in place) of users on Foursquare[2].
Therefore, according to their experiment results, a user on
Foursquare is highly possible to know the POIs which are
within [10, 50](i.e., [100(meter),500(meter)]) around his/her
check-in place. Due to the limited space, we set dmax = 30
as the median of the range to avoid extreme cases.

As our problem stems for commercial spatial crowd-
sourcing applications, we also adopt a real-world dataset for
performance evaluation. Particularly, we use a dataset from
Foursquare [17], which contains check-in activities of users
from New York and Tokyo. We regard each user who has
checks-in on Foursquare [2] as a worker. Therefore, the order
of workers arrival is based on the chronological order of the
check-in time of each worker. The locations of tasks in the
real datasets are generated with the coordinates of POIs (e.g.,
restaurants, shops) within the convex region of the workers
accessed from Foursquare [2]. Since there is no data about
the historical accuracy in the real dataset, we generate the
historical accuracy of all workers to answer all nearby POIs
under normal distribution. Table V presents the overview of
the real-world dataset.

Baselines, metrics and implementation. We compare the
performance of Base-off, Random, MCF-LTC, LAF and AAM
in the evaluation. Base-off is an offline baseline where tasks
with fewer workers nearby (from the remaining workers) are
greedily assigned to the new worker when s/he arrives on the
platform.

Random is a naive online baseline algorithm where tasks
nearby are assigned randomly to the worker when s/he arrives
on the platform. We mainly focus on the effectiveness and
efficiency of each algorithm. We assess the effectiveness by
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Fig. 3: Results on varying cardinality, capacity, and historical accuracy

the maximum index of workers, i.e., the maximum latency
to complete all tasks, and assess the efficiency of different
algorithms via running time and memory cost. For each
experimental setting, we repeat the experiment for 30 times
and record the average results. All algorithms are implemented
in GNU C++. The experiments are conducted on a server
with 40 Intel(R) Xeon(R) E5 2.30GHz processors with Hyper-
Threading enabled and 512GB memory.
B. Experiment Results

This subsection presents the performance in different set-
tings. We first show the results on the synthetic dataset and
then on the real-world dataset.

1) Effect of Cardinality T : The first column of Fig. 3 shows
the results by varying the tasks T .

Effectiveness. Comparing the offline algorithms, MCF-LTC
always achieves the smaller maximum index of workers than
Base-off. Among the online algorithms, AAM performs the
best and both LAF and AAM perform better than Random. For
large T (e.g., |T | = 5000), AAM performs even better than the
proposed offline algorithm (i.e., MCF-LTC). This is because a
large T leads to a large batch. Some workers in a large batch
may have a large index, but they can perform the tasks better
than the others. MCF-LTC tends to select these workers with
large indices, leading to larger latency. For example, when
|T | = 5000, the size of a batch is 3333 and the outputs of
both AAM and MCF-LTC fall into the same batch. But since
MCF-LTC always picks the worker with the highest accuracy,
it may choose the one whose index is the last in the batch.

Efficiency. Both the running time and the memory cost
increase with the increase of |T |. MCF-LTC incurs the longest
running time and the largest memory cost. AAM and LAF need
more time than Random because both of them need to maintain
a heap. Yet their memory costs are similar as Random because
the size of the heap is no more than a small value K. AAM
incurs slightly more overhead than LAF because the former
needs to calculate the “average” and “maximum” values to
switch between two strategies.

2) Effect of Capacity K: The second column of Fig. 3
illustrates the results by varying the capacity of workers.

Effectiveness. The maximum index of workers of all algo-
rithms drops with the increase of K. This is because workers
can perform more tasks on average while the total number of
tasks is fixed. The most notable drop in the maximum index
of workers is when the capacity increases from 4 to 5. It
indicates a slight increase in capacity may notably speed up
task completion when the capacity is small. As expected,
AAM always yields smaller maximum task latency than the
other two online algorithms. The offline algorithm, MCF-
LTC, performs better than Base-off. Note that when capacity
is small(e.g., 4), AAM outperforms MCF-LTC. This can be
explained by the large batch size when the capacity of workers
is small.

Efficiency. In terms of running time and memory, MCF-LTC
consumes the most. Both AAM and LAF consume more time
than Random but with similar memory cost.
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Fig. 4: Results on tolerable error rate, scalability and real datasets

3) Effect of Distribution of Historical Accuracy: The third
and the fourth columns of Fig. 3 present the results when the
historical accuracy follows a normal distribution and a uniform
distribution, respectively.
Effectiveness. For historical accuracy following a normal
distribution, MCF-LTC performs better than Base-off. Both
LAF and AAM outperform Random. For historical accuracy
following a uniform distribution, MCF-LTC is still the best
among the offline algorithms while AAM is the best among
the online algorithms.
Efficiency. For historical accuracy with both distributions,
MCF-LTC always consumes more time and memory than
Base-off. AAM and LAF consume more time than Random,
but have similar memory cost.

4) Effect of Tolerable Error Rate ε: The first column of
Fig. 4 shows the results when varying the tolerable error rate.
Effectiveness. The maximum index of workers of all the
algorithms drops with the increase of ε. MCF-LTC performs
better than Base-off and AAM performs the best among the
three online algorithms.
Efficiency. The results for running time and memory cost are
similar to those in previous experiments.

5) Scalability: The results on scalability are shown in the
second column of Fig. 4.
Effectiveness. When increasing the number of tasks from
10 thousand to 100 thousand, MCF-LTC always outperforms

Base-off and the two proposed online algorithms perform
better than Random. For very large-scale tasks, AAM out-
performs the other two online methods.

Efficiency. MCF-LTC becomes inefficient with very large
numbers of tasks. However, AAM and LAF are still efficient
in both running time and memory cost compared to Random.
Although AAM takes longer time, the gap in time is marginal
compared with the other two online algorithms.

6) Performance on Real-world Dataset: The third and the
fourth columns of Fig. 4 show the results.

Effectiveness. Again, MCF-LTC is the best offline algorithm
while AAM is the best among the online algorithms.

Efficiency. The results for running time and memory cost are
similar to those in previous experiments.

C. Experiment Summary

We make the following observations.
• AAM is the most effective online algorithm (yields the

smallest maximum index of workers) especially with
large amounts of tasks. In most cases, AAM outper-
forms Random and LAF in terms of effectiveness.

• MCF-LTC always peforms better than Base-off and
the effectiveness is affected by the batch size.

• MCF-LTC incurs significant running time and memory
cost. LAF is the best in terms of time and memory.

• AAM is comparatively effective, efficient and scalable
among the online algorithms.



VI. RELATED WORK
Our work is related to the following categories of research:

quality control, latency control and spatial crowdsourcing.
A. Quality Control in Crowdsourcing

Quality control is an important issue in crowdsourcing
research, because workers can make mistakes. There are two
ways to ensure the quality of task completion. The first is Truth
Inference [18], where one task is assigned to multiple workers
and the result is inferred by aggregating and mining answers
from multiple workers. The second is Task Assignment [19],
[20], where tasks are only assigned to the workers who are
more likely to give correct answers. Our work aims to control
not only the quality of task completion, but also the maximum
latency of task completion. Hence previous quality control
approaches are inapplicable to our problem.
B. Latency Control in Crowdsourcing

For tasks that require timely answers, crowdsourcing plat-
forms strive to minimize the latency of task completion.
Most research attracts workers to complete tasks quickly via
monetary incentives [7], [8]. Yet we explore latency control
with voluntary workers, which is the case in many spatial
crowdsourcing platforms such as Facebook Editor [5] and
Google Map Marker [13]. Hence conventional latency control
methods are not directly applicable to our problem. One
close work is [9], where three latency control methods for
crowdsourcing are proposed, including straggler mitigation,
pool maintenance and hybrid learning. However, it assumes
that workers are always available on the platform. In spatial
crowdsourcing, the availability of workers are relatively short-
lived, and spatiotemporal information poses additional con-
straints on tasks and workers.
C. Spatial Crowdsourcing

Recently, spatial crowdsourcing has raised increasing re-
search interest [21]. The majority of research investigates
Quality control [6] and Task Assignment [22], [23], [24], [25],
[26] in spatial crowdsourcing. Yet the latency for task comple-
tion is largely overlooked in the current research. Therefore our
work tries to fill in this gap. To the best of our knowledge, this
is the first work to account for the trade-off between quality
and latency in spatial crowdsourcing.

VII. CONCLUSION

In this paper, we identify the Latency-oriented Task Com-
pletion (LTC) problem in spatial crowdsourcing. We first prove
the NP-hardness of the LTC problem. For the LTC problem in
the offline scenario, where the information of tasks and work-
ers is known in advance, we design a minimum-cost-flow based
algorithm, called MCF-LTC, with a constant approximation
ratio. We then study the online scenario of the LTC problem,
where workers arrive on the platform dynamically and the
platform should arrange tasks for each worker immediately on
his/her arrival. We propose two efficient greedy-based online
algorithms with constant competitive ratio guarantees to solve
the LTC problem in the online scenario. Finally, we conduct
extensive experiments to verify the effectiveness, efficiency
and scalability of the proposed solutions on both synthetic and
real-world datasets.
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